False vacuum

A scalar field φ (which represents physical position) in a false vacuum. The energy E is higher in the false vacuum than that in the true vacuum or ground state, but there is a barrier preventing the field from classically rolling down to the true vacuum. Therefore, the transition to the true vacuum must be stimulated by the creation of high-energy particles or through quantum-mechanical tunneling.

In quantum field theory, a false vacuum[1] is a hypothetical vacuum state that is locally stable but does not occupy the most stable possible ground state.[2] In this condition it is called metastable. It may last for a very long time in this state, but could eventually decay to the more stable one, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" (also called "bounce")[3][4] would spread.

A false vacuum exists at a local minimum of energy and is therefore not completely stable, in contrast to a true vacuum, which exists at a global minimum and is stable.

  1. ^ Abel, Steven; Spannowsky, Michael (2021). "Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum". PRX Quantum. 2: 010349. arXiv:2006.06003. doi:10.1103/PRXQuantum.2.010349. S2CID 234355374.
  2. ^ "Vacuum decay: the ultimate catastrophe". Cosmos Magazine. 2015-09-13. Retrieved 2020-09-16.
  3. ^ Cite error: The named reference fate was invoked but never defined (see the help page).
  4. ^ Markkanen, Tommi; Rajantie, Arttu; Stopyra, Stephen (2018). "Cosmological Aspects of Higgs Vacuum Metastability". Frontiers in Astronomy and Space Sciences. 5: 40. arXiv:1809.06923. Bibcode:2018FrASS...5...40R. doi:10.3389/fspas.2018.00040. S2CID 56482474.

Developed by StudentB